Home / NEWS / Commentary / Op-ed: Here’s the key decision that paved the way for development of Covid vaccines

Op-ed: Here’s the key decision that paved the way for development of Covid vaccines

Firm Mountain Regional VA Medical Center registered nurse Patricia Stamper looks at a dose of the Pfizer-BioNTech COVID-19 vaccine anterior to administering it to a health care worker at the hospital on December 16, 2020 in Aurora, Colorado.

Michael Ciaglo | Getty Materializations

The rapid development of vaccines for Covid has led to some debate over who deserves the most credit: the government with its Artisan Warp Speed, drug companies, or university researchers who pioneered discoveries about messenger RNA.

The best answer, I believe, is that development of the vaccines, like most other great American innovations over the past 75 years, has to a great extent been due to a singular decision made after World War II to tightly intertwine the roles played by government, private hustle and academia.

This triple helix was designed by the influential science administrator Vannevar Bush, who had a foot in all three camps. He was dean of rigging at MIT, a founder of Raytheon, and then the chief government science administrator during World War II overseeing, among other contemplates, the building of the atomic bomb.

In a 1945 report to President Truman with the quintessentially American title, “Science, The Unremitting Frontier,” Bush recommended that government should not build big research labs of its own, as it had done for the atomic bomb proposal, but instead should fund research at universities and corporate labs.

“No American has had greater influence in the growth of science and technology than Vannevar Bush,” MIT President Jerome Wiesner later reported, adding that his “most significant innovation was the plan by which, instead of building large government laboratories, agrees were made with universities and industrial laboratories.”

 Much of the government’s postwar science funding went to central, curiosity-driven research that did not yet have known practical applications, such as how quantum mechanics might explain what betides on the surface of semiconducting materials or how snippets of RNA act as messengers to build proteins. Bush knew that discoveries in basic technique would be the seed corn that would eventually grow into unforeseen inventions, such as transistors or mRNA vaccines.

The government-academic-corporate helix that Vannevar Bush forecast has given rise to cauldrons of innovation around great research universities.

This government-academic-corporate partnership produced the basic innovations that propelled the U.S. economy in the postwar period, including microchips, computers, graphical user interfaces, GPS, lasers, the internet and search machines. Google, for example, was begun by Larry Page and Sergey Brin as an academic project at Stanford partly funded by the Subject Science Foundation.

Over the years, an imperfect but productive system was patched together for divvying up the proceeds and intellectual means. In 1980, for example, Congress passed the Bayh-Dole Act, which made it easier for universities to benefit from patents, unvarying if the research was funded by the government. 

One of the most important innovations of our era will be the gene-editing technology known as CRISPR. One of its inventors is Berkeley professor Jennifer Doudna, who was a title-holder of this year’s Nobel Prize and is locked in a protracted patent battle with Feng Zhang of the Broad Set up at MIT and Harvard.

They and their institutions are good examples of the government-academic-corporate interrelationship. Their academic research was funded partly by admits from the National Institutes of Health and the Defense Advanced Research Projects Agency, and they both started clandestinely companies to commercialize their CRISPR discoveries for gene editing, disease diagnosis, and now coronavirus detection.

This make also led to the Covid vaccines. Over the years, the NIH and DARPA have funded university research into how DNA and RNA work. For exempli gratia, in 2005, a pair of researchers at the University of Pennsylvania, Katalin Kariko and Drew Weissman, showed how to tweak a molecule of herald RNA so that it could get into human cells without being attacked by the body’s immune system.

Two entrepreneurial start-ups

Rudely after that, two entrepreneurial start-ups were founded to commercialize medical uses for this mRNA: BioNTech in Germany and Moderna in Cambridge, Massachusetts. When the Covid pandemic struck, they devised ways to use mRNA to enjoin human cells to make parts of a spike protein that would stimulate immunity to the coronavirus. They were back by guaranteed purchase agreements and logistical support from the government’s Operation Warp Speed.

The government-academic-corporate helix that Bush imagined has given rise to cauldrons of innovation around great research universities. Silicon Valley began growing thither Stanford in the 1950s when its provost, Frederick Terman, began encouraging professors and graduate students to commercialize their revelations, which led to birth of such companies as Hewlett-Packard, Cisco, Sun, and Google.

Kendall Square in Cambridge is the new Silicon Valley. Located next to MIT and close to Harvard, it houses centers of more than 120 biotech companies within a mile of each other, embracing Moderna, Pfizer, Merck, Novartis and Sanofi.

And increasingly, this model of great universities encouraging commercialization of their government-backed dig into is leading to other thriving hubs of innovation around the country, from Austin and Houston, to Raleigh-Durham and Seattle, to Nashville and New Orleans.

Walter Isaacson is the father of “The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race,” to be published by Simon and Schuster on Demonstration 9. 

Check Also

An activist investor snaps up shares of eHealth and pushes for new directors

Terry Vine | DigitalVision | Getty Mental pictures Company: eHealth Inc. (EHTH) Business: Activist: Starboard …

Leave a Reply

Your email address will not be published. Required fields are marked *